Data Consolidation and I mporting Software for Microsoft Dynamics

GP Performance Tests

by

Qiang Zhang

Bachelor of Science, Nanjing University

A Project
Submitted to the Graduate Faculty
of the
University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

November 2006

This project document, submitted by Qiang Zhang in partial fulfillment of the
requirements for the Degree of Master of Science from the University of North Dakota,
has been read by the Faculty Advisor under whom the work has been done and is hereby
approved.

(Faculty Advisor)

This project document meets the standards for appearance, conforms to the style and
format requirements of the Computer Science Department of the University of North
Dakota, and heraby approved.

Graduate Director

W30l 0L
Date

PERMISSION

Title: Data Consolidation and Importing Software for Microsoft Dynamic GP
Performance Tests

Department: Department of Computer Science
Degree: Master of Science

In presenting this report in partial fulfillment of the requirements for a graduate degree
from the University of North Dakota, I agree that Department of Computer Science shall
make it freely available for inspection. I further agree that permission for extensive
copying for scholarly purposes may be granted by the professor who supervised my work
or, in his absence, by the Chairperson of the Department.

Signature W '

[y

Date [{— 50— W{

TABLE OF CONTENTS

PERMISSION. ...t s esn e e e nnneen iii

TABLE OF CONTENTS......ceoe e iv

LIST OF FIGURESot nnne e Vi

LIST OF TABLES. ..o IX

ACKNOWLEDGMENTS ... X

ABSTRA CT et nne e Xi
CHAPTERS

l. INTRODUCTION ...t nnee s 1

0 S o = = S 1

1.2 ODJECHIVES ...ttt nne 2

1.3 ProjeCt OULIINE....c.ve e 3

1.4 Background INfOrmation...........cccueeeveereeieesieseeie e 4

1.5 RePOrt OrganiZation..........cccueeeerueeiieseeseeseeeeeseesiesee e esee e sseesseeeeses 5

. REQUIREMENTS AND SPECIFICATIONS........ooiieeeeeeeeeeei 6

2.1 REQUITEIMENES ...ttt ee e e e sne e e sneesneeneeens 6

2.2 SPECIHTICALIONS.eeieieieieie et re e ne e e 7

2.3 FOrmMat Of TSt RESUITS......oeee e 8

[1. HIGH-LEVEL AND LOW-LEVEL DESIGN.......cccoooiiiiiieeieeee e 12

3.1 System ArCHITECIUIE.........oeeireeeieeie et 12

3.2 USE Case Diagram.......ccceeuereenienie ettt st 14

3.3 Data FlOW Diagrams.........ccceeererierniesieeie et 15

34 User INterfaCe DESIN ..ottt 24

V. IMPLEMENTATION ..ot 33

4.1 ClasS DIiagramSccciereererrieneesieeie e sieseesseestesessseesseseessesseesneeses 33

4.2 DataModelS and Data ACCESSecerieriereereiesiesre s 44

V. TESTING AND VERIFICATION ..o 49

5.1 SYSteM TESHNG. .. .eeeeieeeieeieriee ettt 49

5.2 ACCEPLANCE TESHING ... eeverueerieerieeiesieesie et e e e ses 51

VI. CONCLUSION AND FUTURE WORKcoiiiiieeieeieenee e 57
REFERENGCES ...ttt ettt sae e be e nne e s e e e neasnnas 59
APPENDIX A e ne e nre e nane s 61
APPENDIX B ...ttt e s 65

LIST OF FIGURES

Figure 1. Sample Folder Structure of XML TeSt RESUILS........cceovieiveeiienieieee e 9
Figure 2. System ArChitECLUIEc.oiii e s 13
Figure 3. Use Case DIagraMccceiireieerieee ettt sttt st eesne e sneeses 15
Figure 4. Level-1 Data Flow Diagram ..o s 17
Figure 5. Level-2 Data FlowW Diagram ..o s 18
Figure 6. Level-3 Data Flow Diagram: Process USer iNPUL..........cccevereereeriesienneesiesennees 20
Figure 7. Level-3 Data Flow Diagram: Parsetest files.........ccoovieriincivieienceeeee 22
Figure 8. Level-3 Data Flow Diagram: Upload reSults...........ccccoeeierienennenceeneeniesee e 23
Figure 9. User Interface: Main ENEIYcooeiiiiiiiee e s 25
Figure 10. User Interface: Radio Button Disabled............ccooiiiiieiiniineeeeeee 27
Figure 11. User Interface: Folder Browser DIialogccoveeieinieneeienee e 28
Figure 12. User Interface: Select FIIESTN LiStcooiieiieieeieeeeee e 30
Figure 13. User Interface: File Viewer EXample.......ccooinininiine e 31
Figure 14. User Interface: Message Box EXample ... 32
Figure 15. Package-Level Class Diagram: Process User INPULccoceeveeieneeneeninseeees 34
Figure 16. Package-Level Class Diagram: Control Flow and Data Objects..................... 34
Figure 17. Package-Level Class Diagram: Parse Test FilesS.........ccooviveiieniencnincne 35
Figure 18. Package-Level Class Diagram: Upload ResUItS...........cccoceiininininenineee 35
Figure 19. Class-Level Class Diagram: TOOIDa@ACCESS.........ccevrverreriereniesresiesiesieeeenes 35

Vi

Figure 20. Class-Level Class Diagram: TOOIHEIPEXcccoovveiiiiriineeeeeeeeeie e 36

Figure 21. Class-Level Class Diagram: DataTable VIEWEccccveveeienienennnnenee 36
Figure 22. Class-Level Class Diagram: ApplicationSettings and Applicationitem 37
Figure 23. Class-Level Class Diagram: StatUSFOIM.........ccccevereenernienee e 37
Figure 24. Class-Level Class Diagram: USErNPULS..........cccevireenerneneeneeriesee e 38
Figure 25. Class-Level Class Diagram: ObjectXMLSerializerccoccvveeveneeneniinsennes 39
Figure 26. Class-Level Class Diagram: DIIVEScccviieeiineeneeie e 39

Figure 27. Class-Level Class Diagram: TestCaseCollection, TestCaseltem,

Machineltem and EVENt ..o e 40
Figure 28. Class-Level Class Diagram: XMLTestFile, XMLTestltem and

XMLEVENTEM ... ne e 41
Figure 29. Class-Level Class Diagram: TxtTestFile, TxtTestltem and

XMLSINGIEUSEITTEM.....eeie et 42

Figure 30. Class-Level Class Diagram: IParser, XMLParser, TXTParser,

LookUpTable and ParserHEIPES ..o 43
Figure 31. Class-Level Class Diagram: Loader and LoaderDataACCess..........cceeveeruenne. 44
Figure 32. Error Message for an Invalid USer INPUL..........ccoovriierieneeneeeseesee e 50
Figure 33. Table Display for an Invalid Test Dala.........cccceevereeneriieneeneeiesee e 51
Figure 34. Table Display for Valid TeSt Data..........ccccceeeereriiinienieiesee e 54
Figure 35. Message BOX After ProCESSING......c.ooiiririieiierieeieeseesee e 54
Figure 36. A Screenshot of ABench Webpage.........cccoveeieriineneese e 55
Figure 37. A Screenshot of ABench Webpage.........cccoveeieriineneeieneeeeee e 55
Figure 38. A Screenshot of ABench Webpage.........cccveeveriinieneeie e 56

vii

Figure 39. User Interface: Select Application, OS and Tiercceveerererieninneereseeee 62

Figure 40. User Interface: Add or Select Build NUMDEYcoovviiiiiiiiiiceeeeee 63
Figure 41. User Interface: Select Action on Existing Build Numberccccoeeevvrenee. 63
Figure 42. User Interface: Enter Test Results Folder and Select Files.........cccooeeenennee. 64
Figure 43. User Interface: Start PrOCESScocuviiiiiiie ettt 64
Figure 44. User Interface: Close the SOftware..........cccoveeieriineneeiese e 64

viii

LIST OF TABLES

Table 1. AllTestCaselL ookUp Database Table

Table 2. AllTestCasePerfCounters Database Table........ueeeeeeeee e

ACKNOWLEDGMENTS

| would like to express sincere thanks to the many people who have contributed to
the completion of this study. | would like to thank Dr. Wen-Chen Hu for his support and
guidance through the duration of thiswork. Many thanks to Shawn Hanson, Mark Dowel |
and Russ Brown, for their encouragement, advices and assistance on this project. Special
thanks go to my family, for their constant love, understanding and many sacrifices,

without which would have made this work impossible.

ABSTRACT

Data compatibility and presentation are always a major issue of computer science.
This project was conducted at the Microsoft Corporation for acomplex business
application, Dynamics GP (formerly Microsoft Great Plains). It isapart of the efforts of
publishing the performance test results of a project to a web-based reporting system,
ABench. The proposed system tries to extract and process information from various
sources and save the data into the ABench SQL database with minimal manual
processing.

The proposed system is a database-driven, multi-tier windows application using

C# and .NET. It includes four major components:

1. Graphical user interface: It lets users set up and run the system after entering

necessary information.

2. Configuration & verification unit: It performs the following tasks:
Checksfile availability, database connectivity, default application setting,
etc.

Checks predefined data in database tables.
Launches the data parser.

3. Dataparser: It includestwo functions:

Parses and processes data.

Saves data by using a consistent format.

Xi

4. Dataloader: It uploads the processed datato a database.

This project requires knowledge from both of the different performance testing
results and the ABench SQL Server database. Many design/programming features are
used to develop a generic tool such as dynamic instantiation. In addition to software
design and development, the following tasks are also critical to this research:

Design and implement algorithms for processing the raw testing data.
Establish precise mappings from the test results to the data schemas and
models used by ABench database.

Design and implement a hel per database for storing configuration information,
lookup tables, etc.

Implement an ABench website and database on alocal machine for system

development and testing.

Xii

CHAPTERI|
INTRODUCTION
1.1 Significance

Performance testing is one of the most crucia stepsin software development life
cycle. It is used to test the run-time performance within the context of an integrated
system. The application's features and transactions are tested and compared to measurable
goals and objectives, such as response time from the server for aweb based application.
A final assessment report detailing executive summaries and pass/fail resultsis created
for management to make decisions about the product release.

There are many different ways to go about performance testing, depending on the
application type and test purpose. The tests are usually conducted by automated tools
running against scripted test suites and test cases. Final test results are logged on local
disks for further interpretation. These raw test results are organized in different ways
depending on the testing tool. For acomplex enterprise solution that normally have a
family of applications, each application can have its own test tool, which will create test
resultsin totally different form and data format. Because of the data inconsistency,
creating and presenting compatible results are often afrustrating and time-consuming
process.

This software engineering project was conducted at the Microsoft Corporation for
a complex business solution, Dynamics GP, which consists of avariety of applications.

Raw test results are stored in aplain text (TXT) format for some applications and an

XML format for others. Currently these raw data have to be converted to Excel
spreadsheets for the management to interpret. The problems of this approach include:

1. With the amount of information generated in a given release, the number of

spreadsheets to monitor becomes cumbersome and difficult to manage.

2. It requires great manual interference from the testers to convert the data.

3. The spreadsheets are difficult to read and interpret.

4. Itisnot easy to conduct comparisons between results and goals or previous

test runs.

5. Itishard to communicate the results with other teams, as the format is unique

to certain application type.

ABench, aweb-based reporting website was chosen to be the achieving and
publishing system for the performance testing team. It provides a uniform framework to
for multiple projects, scenarios, test cases, performance metrics, execution tiers and
baselines. This project is apart of the efforts of publishing the performance test results of
different applications to ABench. It is also desirable that the project to be able to
consolidate and process test results from other possible applications using similar
formats.

1.2 Objectives

The primary objectives for this system are

1. Toparse XML resultsand TXT results according to the application types and

predefined configurations.

2. To process and save the parsed data into the remote ABench SQL database.

3. Tobuild atool that is adaptable to other applications that use similar output
format.
1.3 Project Outline

The proposed system is a database-driven, multi-tier Windows application using
C# and .NET programming. By integrating with ABench website, it is expected to solve
the problems of data compatibility and presentation for performance testing datawith
minimal manual processing. After the implementation is completed, initial testing and
debugging will be performed by the devel opers on the local system. The test team will
then take the project for a satisfaction testing on the product system. Feedback from the
test team will be collected to guide a second iteration of the software development life
cycle.

This project requires knowledge from both of the various performance testing
results and the ABench SQL Server database. Many design/programming features are
used to develop a generic tool such as dynamic instantiation. In addition to software
design and development, the following tasks are also critical for this research:

Design and implement algorithms for processing the raw testing data.
Establish precise mappings from the test results to the data schemas and
models used in ABench database.

Design and implement a hel per database for storing configuration information,
lookup tables, etc.

Implement an ABench website and database on alocal machine for system

development and testing.

1.4 Background Information

Some background information about this research include:
Microsoft Dynamics GP (formerly Microsoft Great Plains). Microsoft
Dynamics GP is a comprehensive business-management solution built on the
highly scalable and affordable platform of Microsoft technologies. It offersa
cost-effective solution for managing and integrating finances, e-commerce,
supply chain, manufacturing, project accounting, field service, customer
relationships, and human resources [5].
ABench website and database. ABench is a scalable and generic framework
for archiving and displaying performance data. It is used by a variety of
performance test teams. The front end provides severa viewing options that
range from high-level executive summaries to detailed charts and tables.
. Performance results for various projects are reported using a standard format
making it easy for teams and management read performance results. The
database is hosted on a centrally located server using SQL Server. Users need
to log on with Windows authentication to access the database. The database
uses stored procedures to upload test results to the tables.
NET and C#. The .NET isaframework for programming on the Windows
platform. Along with the .NET framework, C# is alanguage that has been
designed from scratch to work with .NET, as well as take advantage of all the
features provided by Visua Studio 2005, an object-oriented programming and

devel opment environment [6].

1.5 Report Organization
The organization of thisreport is as follows:
Chapter 11 describes the requirements and specifications of this project.
Chapter 111 contains high-level and low-level design.
Chapter 1V focuses on implementation of this project.
Chapter V istesting and verification.
Chapter V1 includes conclusion and future directions.
Appendix A includes the user manual.

Source code is stored in the CD-Rom attached as Appendix B.

CHAPTER II
REQUIREMENTS AND SPECIFICATIONS
A requirement specification describes the user’ s needs of this system. It serves as
an agreement between the end user and developer, it’s viewed as a definition of what the
implementation must achieve. The performance test team, as the end user of this system,
provided requirements and specifications.
2.1 Requirements
The users have the following functiona requirements for the data consolidation
system:
1. Provide aunified method of processing test results. The results are processed
by different tools depending on the application type in the current system.
2. Publish results to the ABench web system with minimal manual intervention.
Only Excel spreadsheets are created for reporting in the current system.
3. The system should be adaptable to other applications that use similar output
formats.
After integration with the ABench website, the whole system should achieve the
following goals:
1. Displaysresults from performance test runsin an easy to read and interpret
format.
2. Allows comparisons between results and goals or previous test runs.

3. Minimizes manual processing of raw data from test execution to publication.

4. Shows product performance over time
The business justifications for this system are specified as follows:
1. Improved productivity for performance test team. In other words, the system
should help the team to cover more tests.
2. Consistency in reporting for program team.
3. Single point of reference for al performance test results.
2.2 Specifications
The system specifications are discussed in the following list:
1. Input:
Be able to process TXT and XML performance test results.
Be able to specify application type, build number and testing environment
information, such as operating system, data server, web server, etc.
The user must have the following two options according to the application
type:
a Processall test results for atest run
b. Select and process multiple test results
2. Output:
Upload processed results to ABench database. Must be able to view test
reports on ABench website.
Report errors and warning messages during the process.
Create log file at the end of the process.

3. Security:

Must work within the constraints of an isolated environment. Performance
tests are primarily run within their own networks, it isimportant that no
interaction with outside domains be required.
4. Database:
Any database schema and models designed for this system should be flexible
enough to handle awide variety of performance test types.
5. Dataformat:
The data must be setup in away that makes reporting from it easier than the
current methods.
6. Interface:
The interface must be easy to use and not cumbersome to set up. Implicit in
this requirement is that the user should only have to specify aminimal amount
of set up information each time results are imported.
7. System environments. The most popular environments are
Windows Server 2003 (Developer can also use Windows X P environment
for development and testing)
NET 2.0 framework
SQL Server 2005
2.3 Format of Test Results
As part of the input requirement for this system, the raw test results must be
stored in a consistent agreed upon format, which includes folder structure, folder naming
convention, and file structure. These files contain raw data that needs to be parsed and

summarized into useful data.

2.3.1 XML Test Results

The test results should be stored in atwo-level folder structure as shown in Figure
2. The parent folder is the physical location for thistest run. The subfolder contains the
XML test files for a certain scenario or module depending on the application type. The
subfolder name should end with the number of users and the string “User” to indicate the
user load. For example, the folder name “APTrx1User” means the scenario or module
name tested is“APTrx”, and only one user is ssimulated. If afolder name failed to follow
the above convention, default value of the number of usersis one.

No constraint for file names aslong asit hasa*®.xml” extension.

WaResults

|2 APTrxllser
) APTr=5lser
) APTrxl0User
I ARTrx1User
IZ) ARTr=Eser
|[Z) ARTrz10User
I Customer1User

Figure 1. Sample Folder Structure of XML Test Results

The following exampleisa XML result file.

!
! "H## # $!
$ ## $ $# " # 9%

$
% %

% %

%

The <test> element contains information of atest suite. The test tags include:
<name>: test name
<starttime>: time at which the results were logged
<type>: the type of test
<machine>: machine name on which the test was run
<0s>: operating system
<osVersion>: version of the operating system
<netFramework>: version of the .NET framework
<event>: information of this particular iteration
The tags inside the <event> tag include:
<time>: time at which thisiteration of the test case was recorded
<type>: type of entry
<message>: description message
<iteration>: iteration index

<data>: total response time for thisiteration

10

2.3.2 TXT Test Results
The test results should be stored in aone-level folder structure. The folder isthe
physical location for al the TXT files of thistest run. No subfolder is alowed. File name
should end with the number of users to indicate the user load. For example, the file name
“glent7.txt” means the scenario or module nameis “glent”, and seven users are simul ated.
The raw data are saved in delimited plain text file. Each linein the files contain
the following data:
TestID: Test ID assigned to atest run
UserID: User ID index
EventID: aunique ID used to identify atest case
Time: time at which the results are logged
MSTime: number of milliseconds since benchmarks started
Type: flag to show start or stop: 0 = start, 1 = stop

RowID: row index

The following is an example of the contents from aresult text file.

TestiD UserlD EventiD Time MSTime Type RowlID
100 2 1101 1/1/1900 5:56:15 PM 18760 0 1
100 1 1101 1/1/1900 5:56:15 PM 18766 0 2
100 4 1101 1/1/1900 5:56:15 PM 18769 0 3
100 7 1101 1/1/1900 5:56:15 PM 18775 0 4
100 5 1101 1/1/1900 5:56:15 PM 18781 0 5
100 3 1101 1/1/1900 5:56:15 PM 18788 0 6
100 6 1101 1/1/1900 5:56:15 PM 18790 0 7
100 7 1101 1/1/1900 5:56:21 PM 24083 1 8
100 1 1101 1/1/1900 5:56:21 PM 24084 1 9
100 3 1101 1/1/1900 5:56:21 PM 24088 1 10
100 5 1101 1/1/1900 5:56:21 PM 24105 1 11

11

CHAPTER I
HIGH-LEVEL AND LOW-LEVEL DESIGN
Based on the specification analysis, several design models of the system are
developed at difference levels of abstraction. This chapter describes the high-level and
low-level designin details.
3.1 System Architecture
System architecture is the top-level design that gives us the overview of the whole
project. There are three main architectural pieces as shown in Figure 2:
1. Dataconsolidation and importing tool, which can be further divided into
several functional components.
2. Raw datafiles generated by performance test.
These files are the input files for the import tool and must be stored in a
consistent format.
3. SQL database to store the processed data.
The production database is hosted on aremote SQL Server named
RM_PERFORMANCE. For development and testing purpose, the project uses

ABench database on local machine.

12

XML TXT User

Results Results
ul
Configuration &
XML Parser TXT Parser | [« Verification

Data Loader

ifi

A =

Figure 2. System Architecture

The data consolidation and importing tool itself can be broken down to user
interface and three major functional components:
1. Userinterface: It allows users to enter necessary information to setup and run
the tool.

2. Configuration & verification unit: This unit performs the following tasks:
Receives inputs from the user interface.
Checks configuration files availability, Database connectivity, default
application setting, etc.
Checks if the predefined data has been setup correctly in Database tables,
such as test cases, performance counters, etc.
If existing build number has been selected from the user interface, prompts

user to choose whether to overwrite or append to previous test run.

13

Launches the data parser
3. Data Parser: based on the file type of the test results, one of the Parser classes
isinstantiated: XMP Parser or TXT Parser. Its functionalitiesinclude
Get theinput files
Parse through files and process data, conduct cal cul ation when necessary
Organize and save datain a consistent format
Pass processed data to data loader
4. Data L oader
Get processed data from Parser
Verify dataintegrity according to database model and configuration file
Upload the valid results to database
3.2 Use Case Diagram
Use case diagram is used to show the interaction between actors and the system.
An actor represents a user or another system that will interact with the system. A use case
isan external view of the system that represents some action the user might performin
order to complete atask [1]. In this project the only actor isthe user.
The use cases are:
1. Input application settings, which include
Input application type
Input operating system
Input execution tier (hardware and server information)
2. Input build number for this application

3. Specify input files. This task include two steps:

14

Input result folder
Select test files to process
4. Start process. User starts the process via User Interface.

Figure 3 demonstrates the User Case Diagram for this project.

Input application
name

Input operating
system

Input execution tier

Input result folder

Input application
settings

Input build number
Specify input files

Figure 3. Use Case Diagram

3.3 DataFlow Diagrams

A Data Flow Diagram (DFD) shows the flow of datafrom external entitiesinto

the system and how the data moves from one process to another. DFD may partition into

levels that represent increasing information flow and function detail. For this project,
three-level DFDs are developed. Figure 4 to Figure 8 show DFDs using the Gane and

Sarson notation [1], which include four symbols:

15

Squares representing external entities.
Bubbles representing processes, which take data as input and output.
Arrows representing the data flows.
Open-ended rectangles representing data stores, such as databases or XML
files.
3.3.1. Level-1 Data Flow Diagram
Level-1 dataflow diagram is aso called context model or afundamental system
model. The whole system is considered as a process.

As shown in Figure 4, the system takes four kinds of input data:
User input: User provides application settings, build number, and test file
information.
Helper database: A helper database is needed for the system to store additional
data such as lookup table and performance counter information. The system
needs to access these data to successfully parse the test files.
Configuration file: Thisfile contains default settings for this system as well as
configurations for each application type.

Test files: Test results to be processed.

16

User Input

Helper database

ABench database < System

N

Test files

Configuration file

Logfile

Figure 4. Level-1 Data Flow Diagram
And there are three kinds of output data:
Configuration file: The system can save current application settings as default
into the configuration file.
ABench database: Processed data are uploaded to ABench database.
Log file: The system save the running record of this processto alog file, such
as the number of files parsed, the number of data rows uploaded, etc.
3.3.2. Level-2 Data Flow Diagram
Since thereis only one process shown in level-1 DFD, it is unclear for the
algorithm applied to transform the input to the output. We can partition the level-1 DFD to

level-2 DFD to reveal more detail, as shown in Figure 5.

17

User input Configuration file

Test files
\ ABench database
Helper database
Upload
Log file results

Figure 5. Level-2 Data Flow Diagram
There are three processes in this Data Flow Diagram.
Process User Input, which include
0 Retrieve datafrom ABench database tables about available application
types, operating systems, execution tiers and build numbers.
0 Extract default application settings from the configuration file.
o Display above information on the User Interface and takes user input.

0 Process and pass information to the next process.

18

Parse test files, which include
0 Get information from the previous process
0 Get information from help database and parse the test files
0 Passthe processed data to the next process
0 Record running information to log file
Upload results, which include
0 Get processed datafrom the previous process
0 Upload datato ABench database
0 Record running information to log file
Please note that level-2 DFD does not show the details about the data flows and
transforms between the processes.
3.3.3. Level-3 Data Flow Diagram
Level-2 DFD can be further partitioned to level-3 DFDs for each process. In these
level-3 DFDs, internal data objects used to transfer information between processes are
explained.
Process user input
This processiis further broken down to four services functions, as shown in Figure
6. There are two kinds of output data for this process: file information data object and

user input data object. These two data objects will be transferred to the next process.

19

User

Menu options ABench database

Initialize user
interface

Menu display, Default setting

Warning message

Configuration file

Select files

Default setting
Select menu,
Input test folder,
Save default
Availablefiles
Parse folder Save user
and savefile inputs
info.
Fileinfo. data object User input data object

Figure 6. Level-3 Data Flow Diagram: Process user input

Thefour service functions are:

0]

Initialize user interface. This function displays user interface to end-user. It
gueries the ABench database tables to create menu options. It extracts data
from the configuration file for default application settings, which are used to
set selected menu items. It also gives warning messages if it fails to connect to

the database or cannot find the configuration file.

20

0 Get user input. This function gets the user input when the user selects items
from menu, inputs test folder or chooses to save the settings as default. It also
save the default settings to the configuration file if user decides to so.

0 Parsefolder and save file information. This function will parse through the
folder and display available filesto user interface. It takes input when the user
selects from the displayed files. It also extracts the information of “number of
users’ from the folder/file names. Finaly it saves all the file information into
an easy-access data object.

0 Saveuser inputs. Thisfunction saves user inputs into an easy-access data
object.

Parse test files
Level-3 DFD for this processis shown in Figure 7. As one can seein the diagram,
this process takes two data objects generated by the previous process. At the end of the
process, it saves the results to a new test case results data object as an output.

Here are the service functions:

0 Create parser. This function takes the parser type information from the user
input data object and creates a parser object accordingly.

o Createlookup table. This function gets application type from the user input
data object. It then creates alookup table in memory by querying the hel per
database.

o Parsefiles. Thisfunction takes input from file information data objects, and
then uses the lookup table to find test case information including test case IDs

and names. It parses through every test file, does necessary calculations on the

21

raw data, and summarizes all the results of thistest run into a new test case
results data object. It displays message to user if needed and record running

information to log file.

User input data object

Parser type Application Hel per database
type
Create parser Create | ook-

up table

Test case ID
Test case name Lookup table

User

Logfile

File info. data object

Test case results data object

Test files

Figure 7. Level-3 Data Flow Diagram: Parse test files
Upload results
Figure 8 represents level 3 DFD for this process, which can be divided into two
service functions. This process takes the test case results data object from the previous
process. It validates the data and uploads valid datato ABench database tables. The final
outputs are inserted rows in the database. Running information is recorded in log file and

messages are displayed for the user.

22

User input data object Test case results data obj ect

Validate and
convert data

At

Valid Data data object Logfile ABench database

Upload valid
data

Figure 8. Level-3 Data Flow Diagram: Upload results

o Vadlidate and convert data. This function gets inputs from user input data
object and test case results data object. It loops through the test case results to
validate data by querying the ABench database tables. It calls a private
method to convert valid datainto a data object ready for database uploading.

0 Upload data. This function uploads the valid-data data object to ABench
database tables. Depending on the user’ s need, it may overwrite or append the
records in the tables for the current build number. Information islogged to file

and displayed to user.

23

3.3.4. Conclusion of Data Flow Diagrams

These three levels of dataflow diagrams give clear insights of system designin a
top-down approach. Detailed design and implementation for each functional component
can start from the level-3 DFDs.

Please be noted that there might be a variety of smaller functional units to support
each service function, such as methods of database access, searching and sorting, etc.
These functional units are the smallest building blocks of the system, however, they are
too detailed to be included in data flow diagrams.

3.4 User Interface Design

User interface design aims to create an effective communication medium between
the user and the system. The design begins with identification of users, tasks and
environmental requirements. After the functionality analysis and modeling, user
scenarios are created to define a set of interface objects and actions. Based on the
interface objects and actions, layouts of the interface elements are generated, such as
menus, icons, buttons, etc.

This system uses a windows-based graphical user interface, as shown in Figure 9.
The interface was designed using Microsoft Visua Studio 2005, which provides rich user
interface features for Microsoft Windows operating system.

The user interface is easy to use and setup. The main part of interfaceisa
Windows Form that prompts the user for additional information for menu items. It has

the following components (Windows controls) and functionalities:

24

Performance Import Tool

—
-

BX)

b ain |
Settingz
Application BP-STD v|
05 | Windows 1P v
Tier |EP Standard V|
’ Save above zettings az default]
Euild
Add or Select Buld # |EF'2?-NewEnv v |
Actions on existing Buld # - &) Append
) Dvenrite
Expected # of lterations |10
Falder

Test Results Folder

Show Files

Frocess Cloze

Figure 9. User Interface: Main Entry
1. “Application” ComboBox

The control isfor Select only.

25

[tems are retrieved from database.

User must select an existing Application Type from the list.

. “OS’ ComboBox

The control isfor Select only.
Items are retrieved from database.

User must select an existing Operating System from the list.

. “Tier” ComboBox

The control isfor Select only.

Items are retrieved from database.

User must select an existing Execution Tier from thelist.

. “Save above settings as default” Button

Set the selected Application type, OS and Tier as the default values. These

datawill be saved in the configuration file.

. “Add or Select Build # ComboBox

User must either write in the box to add a new Build Number or select an
existing one from the dropdown list.
Dropdown list items are retrieved from database.
Input data validation enabled.
“Actions on existing Build #” RadioButtion
This control depends on user’s action on control 5
i. Disabled if user added a new Build Number, as shown in Figure 10

ii. Enabled if user selected an existing Build Number.

26

It has two options for the existing Build Number
i. Append new resultsto the previous test run (default value)
ii. Overwrite the results of previoustest run

Build
Add ar Select Buld # | Mew build "

Figure 10. User Interface: Radio Button Disabled
7. “Expected # of Iterations’ TextBox
This control depends on data from configuration file
i. Disabledif <showExpectediteration> value for this application
typeisFase
ii. Enabledif <showExpectediteration> value for this application
typeis True
User needs to input an integer value in the box. The value is used to check
if iterations processed for atest case matches the expectation.

Input data validation enabled.

27

Browse For Folder

Select Test Results Folder

[7) PerfImportTool
[i'l project

= [project_implementation
) BPResulks

GPResults
[7) WsResults
[7) QiangDoc
() references
() Screenshots
() 5GL Server 2000 Sample Databases

i

W

| o

| | Zancel

Figure 11. User Interface: Folder Browser Dialog

User clicks this button to open a Folder Browser Diaog, as shown in

Figure 11. Thedialog is used to select the test results folder by navigating

The selected full path from Folder Browser Dialog will be shown in the

8. “Test Results Folder” Button
to the location and then clicking OK.
TextBox (control 9) next to this button.
9. “Test Results Folder” TextBox

User has two options to populate this box with the full path of test results

folder

28

i. Click on the button in front of this box and select from the folder
browser dialog, as described previoudly.
ii. Writethe full path in the box.
Input data validation enabled.
10. “Show Files’/” Select Files” Button
This control depends on the contents of control 9
i. Enabledif “Test Results Folder” TextBox is not empty
ii. Disabled otherwise
The name depends on data from configuration file
i. If <alwaysParseAllFiles> value for this application typeistrue,
nameis*“ Show Files’
ii. If <alwaysParseAllFiles> value for this application type isfalse,
nameis*“ Select Files’
Click it will parse the folder specified in “ Test Results Folder” TextBox
(control 9) and populate the below Files ListBox (control 11) with al
eligiblefilesfound in the folder.
11. Files ListBox
Disabled by default; Enabled after clicking “Show Files’/” Select Files
Button (control 10).
Listsall eigiblefilesfound in the test results fol der.

User needs to selects files to process

29

i. If control 10is*“Select Files’, user can select individual filesto
process (see Figure 12). If user does NOT select any filein thelist,
ALL fileswill be processed by default.

ii. If control 10is*“Show Files’, user cannot select individual filesto

process. ALL fileswill be processed always.

Falder

S.E: Wianghproject_implementatior

Select Files

benefit txt s

Test Results Folder

.

department, tt

endclnsedumE. bt

endy 2durmp. bt i

Figure 12. User Interface: Select Filesin List
12. File viewer
Opens up when user double-clicks afile namein the listbox (control 11).
Displays contents of the file in a spreadsheet format for user’s
convenience. Figure 13 shows an example. Thefile used in the example is

“glent.txt”.

30

| B glent.txt M=

C:ALianghproject_implementation\GPR esultshglent. txt

| TestiD Uzl EventlD RecordingTime Yalue StartStop Rowl D
T 1101 190 7.4658FM 14812 [0 Kl
100 1 11m 1411900 74703 P 19739 |1 E
00 1 1101 1AN900 74703 PM 20358 |0 E
100 1 1101 111900 74704 PM 20488 1 |4
00 1 1101 1AN900 74704 PM 21015 |0 B
100 E 11m 1790074700 M 21135 1 I
00 1 11 111900 74705 PM 21686 O E
| L 01 VINI0TATOSPM 21809 T E
1 1 1 AN TATOEFM | 22405 0 E

Cloze

Figure 13. User Interface: File Viewer Example
13. “Process’ Button
Disabled by default; Enabled after Files ListBox (control 11) has been
populated, which means there are files to process.
Clicksto start the process, which include
i. Validatesinput data
ii. Launches backend process driver
14. “Close” Button
Close the main Windows Form and terminates the system.
In addition to the controlsin main form discussed above, afew Message boxes
are used to display warnings, errors, progress status, etc. when necessary. For example,

Figure 14 shows an error message for invalid input value of Expected iteration.

31

Expected iterations can nok be empky,

Figure 14. User Interface: Message Box Example

32

CHAPTER IV
IMPLEMENTATION

After completing the high level and low level design, the functional modules are
implemented by using C# and .NET framework. The development environment is Visua
Studio (VS) 2005 and SQL Server 2005 is used for backend database solution. Transact-
SQL statements are used for database queries and scripts. The complete source codeisin
the attached CD. This chapter discusses implementation details by giving class diagrams
and data models and accesses.

4.1 Class Diagrams

Class diagrams are used to describe a group of classesin a system and their
relationships, such as containment, inheritance and associations [2]. A class represents an
entity of agiven system that provides an encapsulated implementation of certain
functionality [3]. In C#, classes are composed of three things: a name, attributes that
include fields and properties, and some methods to fulfill the functionalities.

This system consists of thirty classes. Among them, four classes are generated
automatically by the VS development environment to start a Windows Form application.
The remaining classes are explained in detail in class diagrams.

4.1.1 Package-Level Class Diagram

Classes that are either ssimilar in nature or related are grouped in a package. This

provides better readability for complex class diagrams. There are four class packagesin

this system, as shown in Figure 15 to Figure 18.

33

Process user input

MainForm
Program
Resources
Settings

ToolHelper
ToolDataAccess

ApplicationSettings
Applicationltem

DataTable viewer
StatusForm

Userlnputs

Figure 15. Package-Level Class Diagram: Process User Input

Control flow and data objects

Driver
ObjectX ML Serializer

TestCaseCollection
TestCaseltem
Machineltem

Event

XMLTestFile
XMLTestltem
XMLTestEvent

TxtTestFile
TxtTestltem
TxtTestSingleUserltem

Figure 16. Package-Level Class Diagram: Control Flow and Data Objects

34

Parse test files

| Parser
XML Parser
TXTParser

ParserHel per
LookUpTable

Figure 17. Package-Level Class Diagram: Parse Test Files

Upload results

Loader
LoaderDataAccess

Figure 18. Package-Level Class Diagram: Upload Results
4.1.2 Class-Level Class Diagram
Figures 19 to 31 demonstrate class level class diagrams. The class functionalities
and relationships are displayed in details. Classes that are generated by the Visua Studio
2005 automatically are not described here, which include MainForm, Program,

Resources, and Settings.

' ToolDatafccess (& |
Class

=) Fields
j’ _db
= Methods
¢ GethpplicationTypelbataset

MainForm Uses

- » ‘¢ GetBuildDataset
Class W GetMax

iy GetOsDhataSet
iy GetTierDataset
¢ ToolDatahccess

Figure 19. Class-Level Class Diagram: ToolDataAccess

35

MainForm
Class

Uses
I E—

Class

A pplicationSettingg

X MLObjectSerializer

Class

" ToolHelper

Class

= Methods

GetApplicationSettingsBy Type
GetDefaulkSettings
GetMurnlserFromTXTFileMarne
GetMurmlserFromxMLSUbFolderMarne
Initialize ComboBox
LoadFileInfoToDataTable
Load3ubfolder ToDataT able
SaveDefaultSettings
serializer_nknownakkribuke
serializer_nknownMode

Figure 20. Class-Level Class Diagram: ToolHelper

MainForm
Class

o

f DataTable_viewer

Class

=#Farm

=l Fields

o
e

Uses
o
o

[= Methods

2 btrok _Click

¥

Figure 19. Class-Level Class Diagram: DataTable viewer

¢ DataTable_viewer (+ 1 overload)
.?V
ﬂV

36

" ApplicationSettings
lass

= Fields

2 applicationList
defaultapplicationType
defaulkapplicationTypeIl
default0s
defaultosI0
defaultTier
defaultTierID

= Properties
ﬁ Applications
= Methods
i@ AddApplication

LS SR . TR 4

¢ ApplicationSetkings (+ 1 overloa...

¢ GetApplicationByType

o

Uses

ToolHelper
Class

Has

‘—

e

1 ApplicationItem

Class

[= Figlds

alwavsP arsedlFiles
description
fileExtension
fileMameFilter
parser Type
showExpectedIteration
tvpe
= Methods
i@ ApplicationItem [+ 1 overload)

LLLeLLLa

Figure 20. Class-Level Class Diagram: ApplicationSettings and Applicationltem

| StatusForm
Zlass
= Farm

[= Figlds

MainForm
Class

Uses &
- » 4
= Methods

.;-V
LJ:\!
i@ Show

¢ SkatusForm

Figure 21. Class-Level Class Diagram: StatusForm

37

' UserInputs (2] |
Class

= Fields
5.*."' _applicationTvpe

) 2% _applicationTypelD
MainForm Creates o _buildappendOroverwrite

Class 4 _buildueworold

2 _buildyumber

% _expectediterations
o _osID

o _osMame

% _resultFolderPath

o _tierID
ParserHel per Uses o _tierlame

Class [= Properties

5 applicationType
i applicationTypelD
M BuildAppendorOversrite

M Buildheworold

Driver Uses P Buildhurmber
— .

Class f expectedlterations

M 0sID

M OsMarne
M ResultFolderPath

4 TierID
L oader Uses M TierMame

—>
Class = Methods

i Userlnputs

Figure 22. Class-Level Class Diagram: Userlnputs

38

" DbjectXMLSerializer <T > @)

ParserHel per Uses Generic Class
EE—
Class
= Methods
¥ Load
i@ ObjeckxMLSerializer
Tool Hel per Uses Save
Class 2 serializer_UnknownAttribute
2 serializer_Unknowniode

A, r

Figure 23. Class-Level Class Diagram: ObjectXML SerialLizer

MainForm Uses | priver (7 |
Class P Clas:
= Fields
o FilesD
=% _loaderInvalidTccDt
| Parser qui ; _loaderialidTocDt
Interface 2 _lookupTable
o _message
oW _parser
L oader Uses o _userInputs
Class —— = Properties
M LoaderInvalidTestCaseCollectionTable
M LoaderyalidTestCaseCollectionTable
M LooklpTable
Userlnputs | Uses [Message
Class —— 5 Methods
i Driver
2* GetlookupTable
LookUpTable | Uses 3 OstParser
Class 47'_ ¢ ParsefndUpload)

Figure 24. Class-Level Class Diagram: Driver

39

XMLParser TXTParser
Class Class
Creates Creates
rf.TEStEaSEED“EEtiDI‘I # |
lass
= Fields
o bestCaseslist
Has

[= Properties
ﬁ LatestTestCase
ﬁ Testiases

= Methods

¢ nddTestCase
¢ GetlndexByTeshCaselD
¢ TestCaseCaollection

Uses

Loader
Class

" Event ® |

Class

= Fields
¢ additionalinfao
data
ikeration
Message
kirne
Lvpe
= Methods
¢ Event (+ 1 overload)

LS SR O S 4

" TestCaseItem # |

Class

= Fields

2 machinesLisk

W kestCaselD

W testCaseMame
[= Properties

5 MachineCount

Has

v

e Machines

ﬁ TestCaselD

ﬁ TestCaseMame
= Methods

iy AddMachine
¢ TestCaseltem (+ 1 overload)

Has

" MachineItem (2] |

Class

= Fields
W count
2% eventslist
W name
W type

= Properties

’ ﬁ Zounk

ﬁ Events
ﬁ Mame
i Type
= Methods
iy AddEvent
¢ Machineltem (+ 1 averload)

v

Figure 25. Class-Level Class Diagram: TestCaseCollection, TestCaseltem, Machineltem
and Event

40

XML Parser [¥MLTestItem (&) |
Class Class
= Fields
Uses o eventsList
W machine
. W name
| XMLTestFile) | W netFramewark,
Class @ os
W 0sYersion
=l Fields W starttime
¥ testslist Has W tvpe
= Propetties ’— = Properties
T Tests M Events
= Methads = Methods
¢ AddTest ¥ AddEvent
W ¥MLTestFile i@ ¥MLTeskItemn (+ 1 overload)

Has

" ¥MLEventItem
Zlazs

[= Figlds

data
ikerakion
MEssage
threadid
kirne
tvpe
= Methods

LLLeLLLa

additionalinfo

i@ ¥MLEventItem (+ 1 overload)

Figure 26. Class-Level Class Diagram: XMLTestFile, XMLTestltem and XMLEventitem

41

-.

TxtTestFile | TutTestItem (&) |
lass lass
= Fields = Fields
o _FileMamne ¥ _numUsers
L.-,\il' _numlJsers W _testCaselDs
L.-,\il' testsLisk W _tesbCaseflames
= Properties W _trigger
P Filehame Has o testSingleUserList

M LatestTest
' NumUsers

' [= Properties

M LatestTestSingleUser

M Tests 5 singleUserTests
= Methods = Methods
g fddTest i@ AddTestSinglellser

g TxkTestFie

Uses Has
TXTParser rf.THtTEStEiI‘IglEUSEI‘ItEI‘I‘I @ |
Class Class
= Fields
o dt

¢ TxETestIbem

W _saveMax
W _saveMean

W _savelMin
¢ _saveTimes
W _userlD

o _valuePairs
W _windowhax
W _windowhean
W _windowMin
o _windowTimes
= Methods
o Calculake
2 isPairCfZera0ne
i@ TxkTestSingleUserIkem

Figure 27. Class-Level Class Diagram: TxtTestFile, TxtTestltem and
XMLSingleUserltem

42

" IParser (# |
Interface
Driver Uses = Properties
m
Class > [Mesnage
ﬁ Farzarlpe
= Methods
¢ Processlafa
5 y.
? Inherits
i _ | TXTParser (%
| ®¥MLParser (= Class
lass
[= Fields
= Fields o message
o message o parserType
o parserType [= Properties
= Properties % Message
M Message % ParserType
M ParserType = Methods
= Methods 53¢ GetTestsFromTAT
¢ ProcessData ¢ ProcessData
¢ BMLParser ¢ TeTParser
I\ v L, 4
¢ Uses
f LookUpTahle (& | Uses
Class
[=) Fields
o
S _message
[= Properties \ 4
P Message " parserHelper # |
ﬁ kable Zlass
= Methods
iy GetTestCaselDMameByParserType = Methods
o GetTestCaselDMarneByTAT “# GetTestsFromxML
o GetTestCaseIDhameByxML ¢ LoadDelimitedTxtToDataTable
¢ GetTriggersEvFilename ¢ ParserHelper
¢ LookpTable i SaveTestiZasesColleckionToxML
o valueExistIndrray ¢ SaveTestsToxML

Figure 28. Class-Level Class Diagram: IParser, XMLParser, TXTParser, LookUpTable
and ParserHel per

43

Userlnputs
Class

" LoaderDatahccess (%) |

Class

[= Figlds

4 _db
= Methods
a* AddMachinelDTaTierInDE
a* AddMachineToDE
a* CheckMachinelDInTierInDE
a? CheckOshameExistInDE
a* CheckProjectMameExistInDE
a* CheckTestCaselDExistInDE
a? CheckTierIDExistInDE
a* DeleteCldTestRunResult
a? GetMachinelDByMachineManme
a? GethumberOfPerfCaunterIDByTestCaselD
a? GetPerfCounterIDAndOrderBy TestCaselD
¢ LoaderDatadccess
¢ LoadLookupTable
2 SQLExecutescalar
a* UploadDrataTableTalE
a* UploadResult

Uses

" Loader # |
lass

47

= Fields
o _invalidTecDt
o 1da
o _message
L
o koDt

Uses o _userInputs

4¢— ¥ FLAYORID

o PROJECTID
W PROJECTMAME
[= Properties
M IrvalidTestCaseCollectionTable

M Message
M yalidTestCaseCollectionTable

= Methods

“# BeginProcess
2 ConstructInvalidDataTable
2 ConstructYalidDataTable
2 FirstIndexCfYalueIndrray
o GetPerfCounterIDOrderByType
¢ Loader
2 LogInvalidEventData
2 LogInvalidiMachine
2 LogInvalidTestCase
2 ValidatedndConvertData

Uses Uses
TestCaseCollection Driver
Class Class

Figure 29. Class-Level Class Diagram: Loader and LoaderDataA ccess

4.2 Data Models and Data Access

The system requires two databases for data storage and access:

1. ABench: It is adatabase that has been used by avariety of performance test

teams for their projects and has the following features:

It is the backend data storage for ABench website.

It is the production database that holds all the processed test results.
In this system, it is the destination for uploading data; it is also used
for system initialization and data validation.
2. Helper: It is adatabase designed and devel oped for this system only.
As the name suggests, it hel ps the system to do the parsing.
It holds the information that cannot be included in the ABench
database.
4.2.1 DataModels
Whether the database is designed reasonable and sufficient will have a direct
effect on the quality of the application. Data models focuse on what data should be stored
in the database. For relational database, the data model is used to design the relational
tables.
The database designed for this system is the Helper database, which consists of
two tables: AllTestCasel.ookUp and All TestCasePerfCounters. These two tables store the
information of lookup table and performance test counters. Table 1 and 2 show the data

schema of these two tables. ABench database is briefly discussed in Chapter 1

45

Table 1. AllTestCaseLookUp Database Table

Collumn Name Data Type Allow Nulls Primary Key
ProjectiD smallint No No
TestCaseType char(50) Yes No
NumUsers smallint Yes No
FileName varchar(64) Yes No
OrigTestCaselD varchar(64) Yes No
TestCaselD Int No No
TestCaseName nvarchar(255) No No

Table 2. AllTestCasePerfCounters Database Table

Collumn Name Data Type Allow Nulls Primary Key
ProjectiD smallint No Y es
TestCaselD int No Yes
TestCaseName nvarchar(255) No No
TestCaseType char(50) No Yes
TestCaseTypelD int No No
TestCaseOwner char(50) No No
TestCaseOwner|D smallint No No
TestCasePriority smallint No No
ScenariolD Smallint No No
PerfCounterID Smallint No Y es
PerfCounterOrder Smallint No No
PerfCounterName varchar(50) No No
PerfCounterUnitID Smallint No No

46

4.2.2 Data Access
From the data access point of view, the system can be largely divided into the
following three layers..
Data Presentation Layer: It contains User Interface components
Business Logic Layer: It contains the parsing and processing modules.
Data Access Layer: It isused to access and perform operations on database
tables.
1) Connectsto the database
2) Retrieves datafrom database
3) Uploads processed data to database
Data Access layer encapsul ates database related operations. As aresult, it makes
it easier to maintain the data manipul ation methods without affects other modul es.
The data access layer developed for this system includes two classes:
ToolDataA ccess class and LoaderDataA ccess. Please refer to the class diagrams Figure
20 and Figure 28 for their description. These classes make use of Microsoft ADO.NET
and stored procedures written with Transact-SQL statements.
Following is a sample method in Tool DataA ccess class. The method is used to
retrieve the maximum value of afield in adatabase table. Inputs are the TableName
string and FieldName string. Out put is an integer, or O if the result is not found. Sample

usage is GetMax (“TestCaseTable”, “TestCaselD").

/!l Retrieve the Max val ue of FieldNane in Tabl eNane
public int GetMax(string Tabl eName, string Fi el dNanme)

{
DbCommand get Max _db. Get Sqgl Stri ngCommand(" SELECT Max(" +

Fi el dNane + ") FROM " + Tabl eNane);

obj ect result = _db. Execut eScal ar (get Max) ;

47

if (result == null || result.ToString() == string. Enpty)

{
return O;
}
el se
{ . .
return int.Parse(result. ToString());
}

}
In this method, “_db” is the database connection. “ GetSqgl StringCommand” isa

method to create a database command from an in-line Transact-SQL query string.
“ExecuteScalar” queries the database and returns result to object “result”. If “result” is

not “null” or empty string, it is parsed to an integer and finally returned.

48

CHAPTERV
TESTING AND VERIFICATION

A system that cannot be trusted to work correctly has no value. This means that
the programs must function correctly and the results that come back are valid and
complete. Software verification is the set of activities that ensure that software correctly
implements a specific function and meets the customer’ s requirements.

Testing plays an extremely important role in verification. It should intentionally
attempt to find problems, for example things happen when they shouldn't or things don't
happen when they should. Testing involves operation of a system under controlled
conditions and evaluating the results. The controlled conditions should include both
normal and abnormal conditions.

5.1 System Testing

System testing provides evidence that the integration of the sub-systems has not
resulted in unexpected behavior and the software meets its functional and non-functional
requirements. In this system, each module has been tested first after the coding. After
integration, the whole system is tested to ensure each part of it communicates well and
functions correctly.

The scenarios tested are:

1. Valid datafrom user interface:
The system accepts valid inputs and starts processing.

2. Invalid datafrom user interface:

49

The system gives error message for the invalid input, processing is not started.
For example, if we enter “c:\NoSuchFolder” in the TestResultsFolder textbox and then

click on Select Files button, the system gives the following error message (Figure 32):

Build
Add or Select Build #

Could not find a part of the path 'c:\MoSuchFaolder’,

Folder

Test Pesults Folder :.c:':xl'ail:u.SuéHFalder
Select Files

Figure 30. Error Message for an Invalid User Input
3. Valid database settings
The system starts processing.
4. Invalid database settings, including connection failure, wrong database server name,
wrong database credential, etc.
The system gives error message, processing is not started.
5. Good test results file settings, including correct folder structure, correct naming
convention and file format.
The system processes files and gives correct results.
An example will be given in next section.
6. Bad test resultsfile settings

The system processes files and displays information to user.

50

For example, if there’' sapiece of invalid test datain the XML file, the system

displays the following table (Figure 33):

B Invalid data of BR-STD i i - 0] x|
BP-5TD
Count Ermoreszage ActionT aken TestCazelD TestCazeMame
TestCazelD Mot exizt in DB | TestCaze skipped | 3005890 BP-EDD-GR-Cust Setting- Custamers etupT upe

Cloze |

Figure 31. Table Display for an Invalid Test Data
5.2 Acceptance Testing
Acceptance testing provides evidence that the system works with real world data.
The system is tested extensively using real test files, including both XML and TXT files.

The following example gives a description of the system environments, data used and the

results obtained.

1. System environments: They include:
Windows XP Professional Operating system
.NET framework 2.0
Intel 1.66Ghz CPU

1.0G RAM memory

51

2. Database settings: The settings include:
Database server: local machine Sony Vaio Laptop
Instance name: (local)\SQLEXPRESS
Security: windows authentication
Database name: ABench
3. Test filesinformation:
Test results folder: C:\Qiang\project_implementation\BPResults
Number of test files: 18
Type of test files: XML

Sample of test file: (Only part of the contents are listed here)

!
! H## # !
S ## # # 0 $
% %
HH##

4. Inputsfrom user interface: The input include:
Application type: BP-STD

OS: Windows XP

52

Tier: BP-Standard

Bulild #: BP-Test-Qiang

Expected # of Iterations. 10

5. Results: Theresultsinclude:

Files are parsed and processed. Figure 34 shows the valid data processed.

Results are successfully uploaded to ABench database. Figure 35 shows the

information. Totally 192 test cases are parsed and 3302 rows are uploaded to the

database.

ABench website publishes the new updated data for this build number “BP-Test-

Qiang”, as shown in Figure 36, 37 and 38.

i. Figure 36 shows the executive summery for the Build # “BP-Test-Qiang”. As
we can see, the two test cases listed in the table have passed the predefined
Goals. For example, the performance value of test case “ 3000290BP-Admin-
Ul-Loader-Home-5User” is 2683 milliseconds, which is below the Goal set as
6500 milliseconds.

ii. Figure 37 shows the trend of the performance by comparing with the previous
test results.

iii. Figure 38 represents the test values of each user for the particular test case.
These tests indicate that the system meets the customer’ s requirements, both
functional and un-functional. It can successfully consolidate and process the test results

and publish them in ABench website as expected.

53

Yalid data of EP-STD i -10] x|

BRP-5TD

Count | ProjectMame MachineM ame | MachineCount OSMare | ProductBeleaze FlavorlD
Dynamics GP H1EE43 Windows <P | BP-Test-Oiang

1 1
1 Diwnamics GP H16649 1 Windowsz ¥P | BP-Test-Oiang 1
2 Dipnamics GP H16649 1 Windows XP | BP-Test-Qiang 1
3 Diynamics GP H16649 1 Windows ¥P | BP-Test-Qiang 1
4 Dynamics GP H16649 1 Windows *P | BP-Test-Oiang 1
] Dynamics GP H1EERE 2 Wwindows <P | BP-Tezt-Oiang 1
g Dynamics GP H1EERE 2 Windows ¥P | BP-Test-Qiang 1
7 Diwnamics GP H16658 2 Windowsz ¥P | BP-Test-Oiang 1 -
| | |

Cloze |

Figure 32. Table Display for Valid Test Data

L x|

Meszage from Driver:

Found parser bype $ML
Found lookup kable BR-5TD
Getking in sMLParser. ..

Could nok find TestCase for '1 User' '‘Badiame'
in'H16642_2005,11.7_23.16.45.878.x<ml' from LookUp DE.

Parsing finished, See results in TeseCasesCollection, xml
Mumber of files parsed: 18
Mumber of TeseCases generated: 192

Mumber of Events{Iterations) generated: 3312

Message From Loader;

Mumber of valid Test Cases: 191
Mumber of walid Test Ikerations(events): 3302
Mumber of invalid Test Cases: 1

Mumber of rows uploaded to database: 3302

Figure 33. Message Box After Processing

54

Test Environment Settings: Apply Seftings |

Build Number: Tier: Goal Baseline: 05 Repetition: Flavor:

BP-Test-Qiang j |BF' Standard j |EIP - Goal j |Windoj IAveragJIFreu vl

bp-std Summary Results

100% Q0% 80% 60% 40% 20% Legend:

R L
S W mmmm Show Execution Rate

W Show Pass Rate

Filter Settings: Apply Settings |

PerfC ounter Priority TestCase Priority Test Owner Test Detail
| Show All Priarities =] |Show All Pnormesj |A\| j ITesta with Results and Gga|j

™ Show Context

There are 2 tests that match the criteria!
TestCaseName 1 [Performance MetricPerfCounter Priority/GoalResul{Status/Overall StatusiComment

3000010-BP-Admin-Ul-Load- Home - 1 User BP-STD | gholma 3 EdElapsed Time (ms)

3000280-BP-Admin-UlLoad- Home - S User BP-3TD gholma 3 E=fFlapsed Time (ms) 2683

Figure 34. A Screenshot of ABench Webpage

|Tesl:l:ase: |BP-Admin-UI-Load- Home - 1 User
|PerfCounter: |E|apsed Time
|Testl:untext: |Undefined

Click arrow to show/hide Baseline and Tier options

14

6000 ms

3640 ms

LA
b

80 ms

4520 ms

4560 ms

4200 ms

3840 ms

3480 ms

3120 ms

2760 ms

2400 ms

Figure 35. A Screenshot of ABench Webpage

55

There are 2 tests that match the criteria!
TestCaseName

Owner |Pri [Performance MetricPerfCounter Priority(GoalResultStatusOverall StatusCommen

3000010-BP-Admin ULLoad Home - 1 User | BP-STD | gholma | 3 [8Elapsed Time (ms) 3 6000 2495 [Pass [NNPASS one
3000290.BP- A drmin UL Load- Home - 3 User | BPSTD | gholma | 3 [ZElapsed Time (ms) 3 6500 2683 -_ oo
TR e — -0l
=l
‘Test{:ase: |3000010: BP-Admin-Ul-Load- Home - 1 User
PeriCounter: [1: Elapsed Time(ms)
[context: [pefault Context
RequestQuenelD Repetition Perf Value
23111 I 2266
23111 % 2283
23111 3 2783
23111 4 2705
23111 5 2439

Figure 36. A Screenshot of ABench Webpage

56

CHAPTER VI
CONCLUSION AND FUTURE WORK

In this project, a data consolidation and importing software was design and
developed. It is a database-driven, multi-tier Windows application using C# and .NET
programming. The project is a part of the efforts of publishing the performance test
results of different applications to ABench web reporting system. The main
functionalities of this system are

4. Parse XML resultsand TXT results according to the application types and

predefined configurations.

5. Process and save the parsed data into the remote ABench SQL database.

6. Processtest results of other applications that use similar output format.

Reguirements specification, design and implementation details are included in this
report. Many design/programming features are used to develop a generic tool such as
dynamic instantiation. After the implementation is completed, the system was tested by
real test files and gave correct results as expected. As a conclusion, it solves the problems
of data compatibility and presentation for performance testing data with minimal manual
processing.

This project requires knowledge from both of the various performance testing
results and the ABench SQL Server database. In addition to software design and
development, the following tasks are also critical for this research:

Design and implement algorithms for processing the raw testing data.

57

Establish precise mappings from the test results to the data schemas and
models used in ABench database.

Design and implement a helper database for storing configuration information,
lookup tables, etc.

Implement an ABench website and database on alocal machine for system

development and testing.

Future work for this project can include:

1.

In the current system, users need to modify and save configurationsin XML
files. A configuration dialog in the user interface can be used to manage
configurations.

In the current system, the data tables of the Helper database have to be created
and populated manually. A function that will initialize these tables from the
user interface can be added to the system.

The current system can only process test resultsin TXT and XML formats. It
will be more beneficial if test resultsin other formats can aso be processed,

such as Excel spreadsheets.

58

REFERENCES

[1] Martin Fowler, Kendall Scott, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, second edition Addison-Wesley, 2000

[2] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli , Fundamentals of Software
Engineering, second edition, Prentice Hall, 2002

[3] Roger S. Pressman, Roger Pressman, Software Engineering, sixth edition, McGraw-
Hill Science/Engineering/Math, 2005

[4] Remez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, third
edition, Addison-Wesley, 2000

[5] Product information for Microsoft Dynamics GP, Retrieved November 10, 2006,
from http://www.microsoft.com/dynamics/gp/product/productoverview.mspx

[6] Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, Karli Watson, Allen Jones,
Professional C# 2005, third version, Wrox, 2005

[7] Juval Lowy, Programming .NET Components, second version, O'Reilly Media, 2005

[8] Cem Kaner, Jack Falk, Hung Q. Nguyen, Testing Computer Software, second version,
Wiley, 1999

[9] Erik T. Ray, Learning XML, second version, O'Reilly Media, 2003

59

APPENDICES

APPENDIX A
User Manual
This user manual provides instructions of how to setup and use the Data
Consolidation and Importing Software. Users should follow the following steps:
1. Check system configuration
Make sure the computer running this system have the following configurations:
Operating system: Windows Server 2003 or Windows XP Professional
NET framework version: 2.0
2. Obtain user permission
The user must get appropriate credential s to databases:
The user has access to ABench and Helper database server
The user has permission to upload and delete records on ABench
3. Prepare test results
The test results must be stored in a consistent agreed upon format, which include
folder structure, folder naming convention and file structure.
Please refer to 2Format of Test Results® in Chapter 3.
4. Install the software
Copy the whole product folder of 2PerflmportTool® to local disk. The folder contains
One executable file: 2PerflmportTool .exe®
Three dynamic link library (DLL) files: 2Parser.dll®,
aMicrosoft.Practices.Enterpriselibrary.Common.di° and
aMicrosoft.Practices.EnterpriseLibrary.Data.dll°

Two configuration files: 2PerfimportToo.exe.config® and 2PerfTool Settings.xml®

61

5. Setup configuration files

Open up 2PerflmportToo.exe.config®, find the following statement

! " #$ % &'
' (()*&
L% * &
! " #$ % &'

(()&

Change the 2Server=(local)\SQLEXPRESS® to your database server instance
name.
6. Start the system: click on 2PerfimportTool.exe®, the main entry Windows form will
display on the screen.
7. Input data using the user interface
Please refer to @User interface design® in Chapter 3 for detailed explanation of the
interface controls.

Select an Application Type from 2Application® ComboBox, as shown in Figure

39.
Settingz
Application BP-5TD kst
05 [*windows =P bt
Tier | BP Standard el

[Save above zettings az default]

Figure 39. User Interface: Select Application, OS and Tier

62

Select an Operating System from 20S° ComboBox, as shown in Figure 39.
Select an Execution Tier from 2Application® ComboBox, as shown in Figure 39.
If you want to save the above settings, click on 2Save above settings as defaul t®
Button, as shown in Figure 39.

Writein the 2Add or Select Build #° ComboBox add a new Build Number or
select an existing one from the dropdown list, as shown in Figure 40.

Bild
Add or Select Build # |BP-Test-Oiang W

Figure 40. User Interface: Add or Select Build Number
Check one of the 2Actions on existing Build # RadioBulttions accord, as shown
in Figure 41.
i. Click on Append to append new results to the previous test run (default
value)

ii. Click on Overwrite to overwrite the results of previous test run

actions on exizting Build # () Append
) Overwite

Figure 41. User Interface: Select Action on Existing Build Number
Click on2Test Results Folder® Button to locate the test results folder or write the
full path in2Test Results Folder® TextBox, as shown in Figure 42.
Click on2Show Files?/°Select Files® Button to populate the below Files ListBox
with al eligible files found in the folder, as shown in Figure 42.
Select files from the Files ListBox to process. Do not select any fileis al files are

to processed, as shown in Figure 42.

63

Falder

Test Resultz Folder

C:hianghproject_implementatior

Show Filez All filez will be parzed

H16649_logTimes. twt_2005.11.7_19.28 &
H15655_logTimes.kt_2005.11.7_19.28
H1E722_logTimes. wt_2005.11.7_19.28
H16732_logTimes.txt_2005.11.7_19.28
H16734_logTimes.txt_2005.11.7_19.28
H1E772 logTimes kt_2005.11.7_19.28
H16750_logTimes.txt_2005.11.7_19.28

Figure 42. User Interface: Enter Test Results Folder and Select Files

Click on 2Process® Button to start the process, as shown in Figure 43.

Process

Figure 43. User Interface: Start Process
After processing, click on 2Close® Button to close the software, as shown in

Figure 44.

Cloze

Figure 44. User Interface: Close the Software

64

APPENDIX B
Source Code

The source code is not printed. It is stored in the accompanied Compact Disk.

65

